Serveur d'exploration sur Caltech

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

On particle energization in accretion flows

Identifieur interne : 000556 ( Main/Exploration ); précédent : 000555; suivant : 000557

On particle energization in accretion flows

Auteurs : Eric G. Blackman [États-Unis]

Source :

RBID : ISTEX:263500EDA3E9655B3EB110880CF00B0740A53607

English descriptors

Abstract

Two-temperature advection-dominated accretion flow (ADAF) or hot ion tori (HIT) models help to explain low-luminosity stellar and galactic accreting sources and may complement observational support for black holes in nature. However, low radiative efficiencies demand that ions receive a fraction η ≥ 99 per cent of energy dissipated in the turbulent accretion. The η value depends on the ratio of particle to magnetic pressure. If modes of dissipation involving compressions at least perpendicular to the magnetic field (like magnetic mirroring) dominate, then even when the pressure ratio is O(1), the required large η can be attained. However, the relative importance of compressible versus incompressible modes is hard to estimate. The plasma is more compressible on larger scales and the relevant length-scale for particle energization can be estimated by equating the longest eddy turnover time (which corresponds to the energy-dominating scale) to the time for which an energy equal to that in the turbulence can be drained into particles. Based on the large scales resulting from this estimate, it is suggested that magnetic mirroring may be important. Also, regardless of the precise η or dissipation mechanism, non-thermal protons seem natural in two-temperature discs because all dissipation mechanisms, and the use of an isotropic pressure, require wave-particle resonances that operate only on a subset of the particles. Finally, it is briefly mentioned how mirroring may help to generate an ADAF or HIT in the first place.

Url:
DOI: 10.1046/j.1365-8711.1999.02139.x


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>On particle energization in accretion flows</title>
<author wicri:is="90%">
<name sortKey="Blackman, Eric G" sort="Blackman, Eric G" uniqKey="Blackman E" first="Eric G." last="Blackman">Eric G. Blackman</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:263500EDA3E9655B3EB110880CF00B0740A53607</idno>
<date when="1999" year="1999">1999</date>
<idno type="doi">10.1046/j.1365-8711.1999.02139.x</idno>
<idno type="url">https://api.istex.fr/document/263500EDA3E9655B3EB110880CF00B0740A53607/fulltext/pdf</idno>
<idno type="wicri:Area/Main/Corpus">000277</idno>
<idno type="wicri:Area/Main/Curation">000277</idno>
<idno type="wicri:Area/Main/Exploration">000556</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Exploration">000556</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">On particle energization in accretion flows</title>
<author wicri:is="90%">
<name sortKey="Blackman, Eric G" sort="Blackman, Eric G" uniqKey="Blackman E" first="Eric G." last="Blackman">Eric G. Blackman</name>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Theoretical Astrophysics, Caltech 130-33, Pasadena, CA 91125</wicri:regionArea>
<wicri:noRegion>CA 91125</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Monthly Notices of the Royal Astronomical Society</title>
<title level="j" type="abbrev">Mon. Not. R. Astron. Soc.</title>
<idno type="ISSN">0035-8711</idno>
<idno type="eISSN">1365-2966</idno>
<imprint>
<publisher>Blackwell Science Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="1999-02-01">1999-02-01</date>
<biblScope unit="volume">302</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="723">723</biblScope>
<biblScope unit="page" to="730">730</biblScope>
</imprint>
<idno type="ISSN">0035-8711</idno>
</series>
<idno type="istex">263500EDA3E9655B3EB110880CF00B0740A53607</idno>
<idno type="DOI">10.1046/j.1365-8711.1999.02139.x</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0035-8711</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Galaxy: centre</term>
<term>acceleration of particles</term>
<term>accretion, accretion discs</term>
<term>binaries: general</term>
<term>galaxies: general</term>
<term>turbulence</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Two-temperature advection-dominated accretion flow (ADAF) or hot ion tori (HIT) models help to explain low-luminosity stellar and galactic accreting sources and may complement observational support for black holes in nature. However, low radiative efficiencies demand that ions receive a fraction η ≥ 99 per cent of energy dissipated in the turbulent accretion. The η value depends on the ratio of particle to magnetic pressure. If modes of dissipation involving compressions at least perpendicular to the magnetic field (like magnetic mirroring) dominate, then even when the pressure ratio is O(1), the required large η can be attained. However, the relative importance of compressible versus incompressible modes is hard to estimate. The plasma is more compressible on larger scales and the relevant length-scale for particle energization can be estimated by equating the longest eddy turnover time (which corresponds to the energy-dominating scale) to the time for which an energy equal to that in the turbulence can be drained into particles. Based on the large scales resulting from this estimate, it is suggested that magnetic mirroring may be important. Also, regardless of the precise η or dissipation mechanism, non-thermal protons seem natural in two-temperature discs because all dissipation mechanisms, and the use of an isotropic pressure, require wave-particle resonances that operate only on a subset of the particles. Finally, it is briefly mentioned how mirroring may help to generate an ADAF or HIT in the first place.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Blackman, Eric G" sort="Blackman, Eric G" uniqKey="Blackman E" first="Eric G." last="Blackman">Eric G. Blackman</name>
</noRegion>
<name sortKey="Blackman, Eric G" sort="Blackman, Eric G" uniqKey="Blackman E" first="Eric G." last="Blackman">Eric G. Blackman</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amerique/explor/CaltechV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000556 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000556 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amerique
   |area=    CaltechV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:263500EDA3E9655B3EB110880CF00B0740A53607
   |texte=   On particle energization in accretion flows
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 11:37:59 2017. Site generation: Mon Feb 12 16:27:53 2024